On $q$-Quasiadditive and $q$-Quasimultiplicative Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On q-Quasiadditive and q-Quasimultiplicative Functions

In this paper, we introduce the notion of q-quasiadditivity of arithmetic functions, as well as the related concept of q-quasimultiplicativity, which generalise strong q-additivity and -multiplicativity, respectively. We show that there are many natural examples for these concepts, which are characterised by functional equations of the form f(qk+ra+b) = f(a)+f(b) or f(qk+ra+b) = f(a)f(b) for al...

متن کامل

On Reduced Q-functions

Schur’s Q-functions with reduced variables are discussed by employing a combinatorics of strict partitions. They are called reduced Q-functions. We give a description of the linear relations among reduced Q-functions. §0 Introduction Q-functions were introduced by Schur in his study of projective representations of symmetric groups. They are symmetric functions and, if we express them in terms ...

متن کامل

ON THE TWISTED q-ZETA FUNCTIONS AND q-BERNOULLI POLYNOMIALS

One purpose of this paper is to define the twisted q-Bernoulli numbers by using p-adic invariant integrals on Zp. Finally, we construct the twisted q-zeta function and q-L-series which interpolate the twisted q-Bernoulli numbers.

متن کامل

ON Q-BITOPOLOGICAL SPACES

We study here $T_{0}$-$Q$-bitopological spaces and sober $Q$-bitopological spaces and their relationship with two particular Sierpinski objects in the category of $Q$-bitopological spaces. The epireflective hulls of both these Sierpinski objects in the category of $Q$-bitopological spaces turn out to be the category of $T_0$-$Q$-bitopological spaces. We show that only one of these Sierpinski ob...

متن کامل

Steep polyominoes, q-Motzkin numbers and q-Bessel functions

We introduce three deenitions of the q-analogs of Motzkin numbers and illustrate some combinatorial interpretations of these q-numbers. We relate the rst class of q-numbers to the steep parallelogram polyominoes' generating function according to their width, perimeter and area. We show that this generating function is the quotient of two q-Bessel functions. The second class of q-Motzkin numbers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2017

ISSN: 1077-8926

DOI: 10.37236/6373